السبت، 28 نوفمبر 2015


حساب التغير في المحتوى الحراري 4-2


قانون هس

تعتمد العديد من الحسابات الكيميائية على قانون وضعه العالم الألماني ' هس عام 1840. وينص هذا القانون على أن قيمة حرارة التفاعل (التغير في المحتوى الحراري ، أو التغير في الإنثالبي القياسي لتكوين مركب) لأي تفاعل كيميائي تحت ضغط ثابت يساوي كمية ثابتة سواء تم التفاعل في خطوة واحدة أو عدة خطوات. وهذا يعني أن حرارة التفاعل تعتمد فقط على خواص المواد المتفاعلة والمواد الناتجة من التفاعل ، أي على الحالتين الابتدائية والنهائية للتفاعل ولا تتأثر بالطريق الذي يسلكه التفاعل. وتتضح أهمية هذا القانون في إمكانية حساب حرارة التفاعل وذلك أيضا للتفاعلات التي لايمكن قياسها بطرق تجريبية بسبب حدوثها ببطئ شديد بحيث تتعذر دراستها أو أن تحدث تفاعلات جانبية تنتج موادا غير مرغوب فيها بجانب المواد المطلوبة.

نص قانون هس الحراري

" التغير في الإنثالبي \Delta H الحادث أثناء احدى العمليات التامة هو مجموع تغيرات الإنثالبي لجميع الخطوات المتتالية للعملية "
نستنتج من هذا القانون أن إنثالبي التفاعل لا يتغير بتغير مسار التفاعل وإنما يعتمد فقط على الحالة الابتدائية والحالة النهائية للتفاعل.
الحـــرارة 2-2:

الحرارة في الفيزياء والكيمياء إحدى أشكال الطاقة، يترافق معها حركة الذرات أو الجزيئات أو أي جسيم يدخل في تركيب المادة. ممكن توليد الحرارة عن طريق:
تتنقل الحرارة بين الأجسام بالإشعاع والتوصيل حراري والحمل الحراري. وتنتقل الحرارة تلقائيا من درجة الحرارة الأعلى للأدنى. فدرجة الحرارة هي مقياس مدىسخونة جسم ما أو برودته، وهي التي تحدد اتجاه انتقال الحرارة تلقائيا، إلا أنه ممكن استنفاذ شغل لنقلها في الاتجاه المعاكس.
تسمى كمية الحرارة اللازمة لرفع درجة حرارة جسم ما درجة مئوية واحدة بالسعة الحرارية. السعة الحرارية لكل مادة محددة ومعروفة. الحرارة اللازمة لرفع درجة حرارة وحدة الكتلة من مادة ما درجة واحدة تسمى بالحرارة النوعية وهي تعتمد على حالة المادة وتركيبها الكيماوي. عند احتراق الوقود تصدر كمية من الحرارة تعرف باسم القيمة الحرارية للوقود وتقدر عادة بالوحدة الحرارية البريطانية. خلال عملية تحول مادة نقية من حالة إلى أخرى يتم فقد حرارة أو اكتسابها دون أي تغير في درجات الحرارة وتعرف كمية الحرارة المفقودة أو المكتسبة إبان عملية التحول باسم الحرارة الكامنة وتعتمد بشكل مباشر على نوعية المادة وحالتها الابتدائية والنهائية



الطــــاقة 1-2..


الطاقة هي أحد صور الوجود ، فالكون مكون من أجرام وطاقة . منذ النظرية النسبية لاينشتاين نعرف تكافؤ المادة والطاقة ، فالطاقة يمكن ان تتحول إلى مادة وبالعكس يمكن للمادة أن تتحول إلى طاقة . وقد رأينا تحول المادة إلى طاقة في اختراع القنبلة الذرية.
يمكن للطاقة أن تأخذ أشكالاً متنوعة منها طاقة حرارية ، كيميائية، كهربائية ، إشعاعية ، نووية، طاقة كهرومغناطيسية، وطاقة حركية. هذه الأنواع من الطاقة يمكن تصنيفها بكونها طاقة حركية أو طاقة كامنة، في حين أن بعضها يمكن أن يكون مزيجا من الطاقتين الكامنة والحركية، وهذا يدرس في الديناميكا الحرارية.
جميع أنواع الطاقة يمكن تحويلها من شكل لآخر بمساعدة أدوات بسيطة أو أحياناً تستلزم تقنيات معقدة مثلاً من الطاقة الكيميائية إلى الكهربائية عن طريق الأداة الشائعة البطاريات أوالمركمات، أو تحويل الطاقة الحرارية إلى طاقة ميكانيكية وهذا نجده في محرك احتراق داخلي، أو تحويل الطاقة الشمسية إلى طاقة كهربائية، وهكذا.
وقد بينت نظرية النسبية لأينشتاين أن المادة والطاقة هما صورتان لشيء واحد، وعرفنا تكافؤ المادة والطاقة ، هذا الاكتشاف اكتشفة أينشتاين عام 1905 وكتبه في النظرية النسبية الخاصة ، ويعبر عن تكافؤ الطاقة والمادة بمعادلته الشهيرة : E=mc2. هذا الاكتشاف الذي نتج عنه اختراع القنبلة الذرية التي ألقيت على هيروشيما عام 1945 وأنهت الحرب العالمية الثانية بيناليابان والولايات المتحدة. ونعرف تحول المادةmatter إلى طاقة من الانشطار النووي و الاندماج النووي.
مصطلحات الطاقة وتحولاتها مفيدة جداً في شرح العمليات الطبيعية. فحتى الظواهر الطقسية مثل الريح، والمطر والبرق والأعاصير تعتبر نتيجة لتحولات الطاقة التي تأتي من الشمسعلى الأرض. الحياة نفسها تعتبر أحد نتائج تحولات الطاقة: فعن طريق التمثيل الضوئي يتم تحويل طاقة الشمس إلى طاقة كيميائية في النباتات ، يتم لاحقا الاستفادة من هذه الطاقة الكيميائية المختزنة في عملية التمثيل الغذائي للكائنات الحية والإنسان. ومن النبات ينتج الخشب وهو مصدر آخر للطاقة يرجع أصلها إلى الشمس.
ضمن الاستخدام الاجتماعي: تطلق كلمة "طاقة" على كل ما يندرج ضمن مصادر الطاقة، إنتاج الطاقة، واستهلاكها وأيضا حفظ موارد الطاقة. بما أن جميع الفعاليات الاقتصادية تتطلب مصدرا من مصادر الطاقة، فإن توافرها وأسعارها هي ضمن الاهتمامات الأساسية والمفتاحية. في السنوات الأخيرة برز استهلاك الطاقة كأحد أهم العوامل المسببة للاحترار العالمي مما جعلها تتحول إلى قضية أساسية في جميع دول العالم. الطاقة هي القدرة على بذل جهد.


قانون هنري 
في الكيمياء، قانون هنري هو أحد قوانين الغازات وضعه وليام هنري عام 1803. وينص القانون على: "في درجة الحرارة الثابتة، تتناسب كمية معلومة من الغاز الذائب في سائل معلوم النوع والحجم طردياً مع الضغط الجزئي لذلك الغاز الطافي فوق السائل". بعبارة أخرى، ينص القانون على أن انحلالية غاز في سائل تتناسب طردياً مع الضغط الجزئي للغاز فوق السائل.
من الأمثلة في حياتنا اليومية على قانون هنري المشروبات الغازية المكربنة. فقبل فتح زجاجة أو علبة المشروب الغازي، يكون الغاز الموجود فوق الشراب ثنائي أكسيد الكربون النقي عند ضغط أعلى قليلاً من الضغط الجوي. الشراب نفسه يحوي ثاني أكسيد كربون مذاب. عند فتح العبوة، يخرج الغاز مصدراً هسيساً مميزاُ. وطالما أن الضغط الجزئي لثاني أكسيد الكربون فوق السائل يكون أقل بكثير، يخرج الغاز المذاب في السائل على شكل فقاعات. إذا ترك كأس من هذا الشارب مكشوفاً، فإن تركيز ثاني أكسيد الكربون فيه يصبح في حالة توازن مع ثاني أكسيد الكربون في الجو، وعليه لا يعد الشراب غازياً. ثمة مثال أكثر غرابة على قانون هنري وهو انخفاض الضغط في الغوص ومرض تخفيف الضغط.

الطــاقة الشمسية :
الطاقة الشمسية هي الضوء والحرارة المنبعثان من الشمس اللذان قام الإنسان بتسخيرهما لمصلحته منذ العصور القديمة باستخدام مجموعة من وسائل التكنولوجيا التي تتطور باستمرار. وتضم تقنيات تسخير الطاقة الشمسية استخدام الطاقة الحرارية للشمس سواء للتسخين المباشر أو ضمن عملية تحويل ميكانيكي لحركة أو لطاقة كهربائية، أو لتوليد الكهرباء عبر الظواهر الكهروضوئية باستخدام ألواح الخلايا الضوئية الجهدية بالإضافة إلى التصميمات المعمارية التي تعتمد على استغلال الطاقة الشمسية، وهي تقنيات تستطيع المساهمة بشكل بارز في حل بعض من أكثر مشاكل العالم إلحاحا اليوم.




الحالة الفيزيائية للماء 






              
تغيرات الحالة الفزيائية 4

أولاَ: تغيرات الحالة الفيزيائية الماصة للطاقة
 
* الإنصهار :  هي العملية التي يتحول من خلالها الصلب إلى سائل .
 
كيفية حدوثه : لكي ينصهر الثلج فإنه يحتاج إلى طاقة وهذه الطاقة تقوم بتكسير الروابط الهيدروجينية التي بين الجزيئات وبذلك تتباعد الجزيئات عن
بعضها البعض فتتحول إلى الحالة السائلة .
 
العوامل : تعتمد الطاقة اللازمة لصهر مول من المادة على قوة التجاذب بين جسيمات المادة .
 
ملاحظة : دائماً قوى التجاذب بين الأيونات أكبر بكثير من الروابط الهيدروجينية .
 
* التبخر : هي العملية التي يتحول من خلالها السائل إلى غاز أو بخار .
 
البخار : هي الحالة الغازية للمواد التي تكون في الحالة السائلة عند درجة حرارة الغرفة .
 
كيفية حدوثه : عندما يكتسب الماء السائل طاقة فإن جزيئات الماء تكتسب طاقة حركية ولكن بعض جزيئات السائل تمتلك طاقة أعلى من الجزيئات 
الأخرى ولكي تتحول هذه الجسيمات إلى حالة غازية يجب أن تمتلك طاقة كافية للتغلب على قوى التجاذب بين جسيمات السائل .
 
التبخر السطحي : هي عملية تحول السائل إلى بخار عند سطح السائل فقط .
 
* التسامي : هي تحول المادة مباشرة من الحالة الصلبة إلى الحالة الغازية دون المرور بالحالة السائلة .
 
ثانياً :  تغيرات الحالة الفيزيائية الطاردة للطاقة
 
* التجمد : هو تحول المادة من الحالة السائلة إلى الحالة الصلبة .
 
درجة التجمد : هي درجة الحرارة التي يتحول عندها السائل إلى صلب بلوري .
 
تكونه :
 
 عند وضع ماء سائل في الثلاجة فإن الماء يفقد طاقة وبالتالي تفقد جزيئات الماء طاقة حركية وتقل سرعتها . 
عندما تفقد طاقة حركية كافية تبقي الروابط الهيدروجينية التي بين جسيمات الماء الجسيمات ثابتة في مواقعها ومتجمدة .
 
 
* التكاثف : هي العملية التي يتحول من خلالها غاز أو بخار إلى سائل .
 
* الترسيب : هو عملية تحول المادة الغازية إلى الحالة الصلبة دون المرور بالحالة السائلة وهو عكس التسامي 


التحولات الستة المحتملة بين حالات المادة


                                                                 


تصنيف المواد الصلبة البورية ..




أكثر أنواع الكواتز شيوعاَ هو البلوري السداسي 



المواد السائلة والمواد الصلبة 3   

 اللزوجة؟

هي مقاومة مائع ما للجريان، ومقدار مقاومته لضغط يجبره على التحرك والسيلان. كلما زادت لزوجة مائع ما، قلّت قابليته للجريان. وبالنسبة للسوائل، فإن اللزوجة تكافئ المصطلح الدارج بـ"الثخانة". فالعسل ثخن عال اللزوجة، والماء سلس دني اللزوجة.
تكون جزئيات سائل عالي اللزوجة مرتبطة ببعضها بشكل قوي، وبذلك تكون أقل قدرة على التحرك. ويكبر احتكاكها بالجسم الصلب الملامس لها، ويمكن وصف اللزوجة بأنها احتكاك داخلي بين جزيئات السائل.
. نلمس اللزوجة في حياتنا اليومية مثل سقوط ملعقة في عسل النحل أو سقوط قطعة حديد في قطران ، وكذلك جريان الماء داخلى أنابيب المياه ، ما يحدث أثناء ذلك من مقاومة للحركة متعلق بلزوجة السائل.
و هي خاصيه مهمه من خصائص الموائع وبها يقاوم المائع التغير في الشكل الناتج من تأثير قوى القص المؤثره عليه. فإذا افترضنا وجود طبقه من المائع بين لوحين مستويين متوازيين كما بالشكل بحيث يثبت اللوح السفلى ويتحرك العلوى بسرعه تحت تأثير القوة
التوتر السطحي : Surface tension؟

 هو التأثير الذي يجعل الطبقة السطحيّة لأي سائل تتصرف كورقة مرنة. ذلك التأثير الذي يسمح للحشرات بالسير على الماء، والأشياء المعدنية الصغيرة كالإبر، أو أجزاء ورق القصدير من الطفو على الماء، وهوالمسبب أيضا للخاصيّة الشعريّة. وهناك التوتر الواجهي هو اسم لنفس التأثير عندما يحدث بين سائلين. تربط بين جزيئات المادة المتجانسة قوى تسمى قوى الجذب الجزيئية (قوى التماسك) تعمل على تماسك جزيئات هذه المادة بعضها ببعض، إن قيمة هذه القوى في السوائل تكون أقل مما عليه في الأجسام الصلبة وهذا ما يفسر تغير شكل السائل بتغير الإناء الموجود فيه، بالإضافة إلى تلك القوى توجد قوى تؤثر بين جزيئات السائل وجزيئات الأوساط الأخرى التي تلامسها سواء أكانت حالة تلك الأوساط صلبة أو سائلة أو غازية تدعى هذه القوى ب (قوى التلاصق)


المواد الصلبة البلورية ؟
مادة ذراتها أو أيونتها أو جزيئتها مرتبة في شكــل هندسي منتظم .




الجمعة، 27 نوفمبر 2015


 "وجود ثاني اكسيد الكربون في الهواء "



 "حالات المادة"




"تأثير الغازات في انتفاخ البالون "


"وحدات القياس المختلفةللضغط "


حالات المادة 1
الغازات

تتحرك جزيئات العناصر والمركبات الغازية حركة عشوائية ، وتصطدم مع بعضها ، وقد تتبادل الطاقة فيها بينها ..

عامل انضغاطها كبير بالمقارنة بالحالتين السائلة والصلبة .. 


وهذه الخاصية لها فوائد عديدة ومنها عند استعمال إطارات العربات التي تنتفخ بضغط الهواء من داخلها .. ويكون الهواء خليطاً 


من غازات تسلك فيزيائيًا بنفس طريقة الأكسجين النقي أو النيتروجين النقي أو أي مادة غازية أخرى .. ويمكن

لحجم هواء مقداره مرتين أو ثلاثة مرات من حجم الإطار أن يدفع إلى داخله تحت ضغط .. وإذا ثقب الإطار فإن

الهواء الفائض سيدفع للخارج ويميز هذا السلوك جميع الغازات .. 


 تتمتع بصفة التميع عند ارتفاع الضغط إلى مستويات عالية جداً وإن كان متفاوتاً تبعاً لنوع العنصر أو المركب الغازي .


ويمكن تقسيم العناصر الغازية والمركبات الغازية على أساس قوى التجاذب بين الجزيئات والحجم الذي يشغله
الغاز إلى نوعين :-


أ- الغازات المثالية ولها قوانين خاصة بها ..


ب - الغازات الحقيقية والتي لا تنطبق عليها قوانين الغازات المثالية ..


 يمكن دراسة سلوك أي غاز ووصفه عن طريق ثلاث متغيرات وهي الحجم ، درجة الحرارة ، الضغط ..
1 - الحجم ..
حجم أي مادة هو عبارة عن الحيز الذي تشغله تلك المادة ... فبالنسبة للغازات يكون حجم الغاز هو نفسه مثل
حجم الوعاء الموجود فيه .. 


2- درجة الحرارة .. 

التدريج العالمي لقياس درجة الحرارة هو تدريج مطلق بمعنى أنه يبدأ من الصفر المطلق ..
أن الصفر المطلق هو أدنى مدى لدرجة الحرارة ويُسمى هذا التدريج بتدريج كالفن وتستعمل تدريجات أخرى
لدرجات الحرارة مثل التدريج السيليزيوس أو السنتيجرادي وكذلك التدريج الفهرنهيتي .. 

3- الضغط .. 
يتغير الضغط الجوي تبعًا للارتفاع عن مستوى سطح البحر .. ويُعرّف الضغط الجوي القياسي بأنه الضغط الذي
يحمل عموداً من زئبق ارتفاعه 760 ملم عشند صفر درجة مئوية عند مستوى سطح البحر 


كيفية قياس ضغط الغاز ؟
يمكن استخدام جهاز المانومتر لقياس ضغوط الغازات شرط أن لا يتعدى واحداً من الضغط الجوي ..


قانون جراهام ؟


قانون غراهام ويعرف باسم قانون غراهام للتدفق (أو للانتشار) عبارة عن قانون يصف العلاقة بين معدل تدفق الغازات مع كتلتها المولية.
وضع القانون من قبل عالم الكيمياء والفيزياء توماس غراهام عام 1848. وجد غراهام أن معدل تدفق الغازات يتناسب عكساً مع الجذر التربيعي للكتلة المولية لجزيئات الغاز.